
SQUIP: Exploiting the Scheduler Queue Contention Side Channel

Stefan Gast1,2, Jonas Juffinger1,2, Martin Schwarzl2, Gururaj Saileshwar3,
Andreas Kogler2, Simone Franza2, Markus Köstl2, Daniel Gruss2

1 Lamarr Security Research, 2 Graz University of Technology, 3 Georgia Institute of Technology

Abstract—Modern superscalar CPUs have multiple execution
units that independently execute operations from the instruc-
tion stream. Previous work has shown that numerous side
channels exist around these out-of-order execution pipelines,
particularly for an attacker running on an SMT core.

In this paper, we present the SQUIP attack, the first
side-channel attack on scheduler queues, which are critical
for deciding the schedule of instructions to be executed in
superscalar CPUs. Scheduler queues have not been explored
as a side channel so far, as Intel CPUs only have a single
scheduler queue, and contention thereof would be virtually the
same as contention of the reorder buffer. However, the Apple
M1, AMD Zen 2, and Zen 3 microarchitectures have separate
scheduler queues per execution unit. We first reverse-engineer
the behavior of the scheduler queues on these CPUs and
show that they can be primed and probed. The SQUIP attack
observes the occupancy level from within the same hardware
core and across SMT threads. We evaluate the performance of
the SQUIP attack in a covert channel, exfiltrating 0.89 Mbit/s
from a co-located virtual machine at an error rate below 0.8 %,
and 2.70 Mbit/s from a co-located process at an error rate
below 0.8 %. We then demonstrate the side channel on an
mbedTLS RSA signature process in a co-located process and
in a co-located virtual machine. Our attack recovers full RSA-
4096 keys with only 50 500 traces and less than 5 to 18 bit
errors on average. Finally, we discuss mitigations necessary,
especially for Zen 2 and Zen 3 systems, to prevent our attacks.

1. Introduction

Modern CPUs are highly optimized for performance
and efficiency. One driving factor are out-of-order execution
pipelines. CPUs have multiple execution units that operate
independently. Instructions are split up into micro-operations
(µops) and put into the reorder buffer. This allows executing
µops out of order, as soon as their dependencies are met, by
scheduling them for the corresponding execution unit.

Previous works have exploited these pipeline optimiza-
tions in various ways. Spectre [32] and Meltdown [38]
exploit that the CPU runs operations out of order that should
not be executed. These operations then leak information
while they are executed transiently. Other attacks focus more
on side channels in the pipeline rather than its misbehav-
ior. For instance, PortSmash [5] and SMoTherSpectre [18]

exploit that an execution unit can only execute one µop
simultaneously. Thus, running the same µop simultaneously
on two SMT threads will lead to a slight timing variation
in one of the two SMT threads until the execution unit is
available again. Also, the contention of the reorder buffer
has been considered for side-channel attacks [4].

Most of these works have focused on Intel CPUs, where
server (Xeon) and client (Core) CPUs have a similar design
with a single µop scheduler for all execution units [28].
Consequently, the scheduler and scheduler queues on Intel
CPUs are not a high value target for attacks as equivalent
information can be obtained by the already known attacks,
e.g., on the reorder buffer [4]. In particular, the single-
scheduler design inherently does not leak information on
the type of instruction as it is shared for all execution
units. A fundamentally different design choice is to have
per-execution-unit scheduler queues. During our reverse-
engineering we discovered that the Apple M1 [30], the
AMD Zen 2 [9], and the AMD Zen 3 [10] follow such
a per-execution-unit scheduler design. Hence, we ask the
following research question in this paper:

Do per-execution-unit schedulers leak more information
than a single scheduler? Can scheduler queues be utilized
in contention-based attacks to leak secrets such as crypto-
graphic keys from co-located workloads?

In this paper, we present the SQUIP attack, the first
side-channel attack on scheduler queues. With SQUIP, we
measure the precise degree of Scheduler Queue Usage (i.e.,
occupancy) via Interference Probing. We show that this
occupancy level measurement works on microarchitectures
of different vendors, namely the Apple M1, AMD Zen 2 and
Zen 3. The SQUIP measurement method is able to measure
the precise occupancy level with a high temporal resolu-
tion as it uses only low-latency operations, and observes
contention (i.e., exceeding the capacity) via a pipeline stall.
We show that these stalls are observable using performance
counters or non-serialized timer reads. We show that SQUIP
is particularly dangerous when untrusted workloads are co-
located on SMT threads, a setup still considered secure on
AMD CPUs and not excluded for future Apple CPUs.

We develop and evaluate the SQUIP attack in a series
of experiments. We first present the SQUIP measurement
method, which precisely measures scheduler contention on
the Apple M1, the AMD Zen 2 and the AMD Zen 3 microar-
chitectures. We determine precise thresholds directly related
to the corresponding scheduler queue sizes. We evaluate the

performance and robustness of SQUIP in a covert channel
scenario on SMT-enabled AMD Zen 2 and Zen 3 machines.
In a native cross-process scenario, the SQUIP covert channel
achieves a bandwidth of 2.70 Mbit/s at an error rate of less
than 1 %. Across virtual machines (VMs), we achieve a
bandwidth of 0.89 Mbit/s at an error rate of less than 0.8 %.

We then demonstrate that the SQUIP attack can exploit
the per-execution-unit scheduler queues to leak more infor-
mation about the instructions executed compared to single-
scheduler-queue or reorder-buffer contention. Specifically,
we show that we can leak whether specific instructions,
grouped by their scheduler, have been executed and even
measure the precise degree of contention on this scheduler.
On a Zen 3 machine, we demonstrate the significance of this
side channel in an attack on an mbedTLS RSA signature
service co-located on the other SMT thread of a physical
core. In a native cross-process scenario, the SQUIP side
channel leaks full RSA-4096 keys with only 50 500 traces
and less than 5 (n = 10, σx̄ = 1.28) bit errors. Across VMs,
we leak full RSA-4096 keys with only 50 500 traces and
less than 18 (n = 10, σx̄ = 3.26) bit errors.

We discuss how this side channel affects current and
future Apple and AMD CPUs, as well as mitigations neces-
sary to prevent our attacks. We propose operating-system-
level mitigations to prevent exploitation of the SQUIP side
channel across security domains or tenants. We also discuss
what CPU designs are unaffected and how future CPU
designs can take these design choices into account.

To summarize, we make the following contributions:
1) We present the SQUIP side channel, the first side-

channel attack on scheduler queues in CPUs.
2) We evaluate our attack in native and cross-VM covert

channels, with bandwidths of 2.70 Mbit/s (native) and
0.89 Mbit/s (cross-VM), at error rates of less than 1 %.

3) We show that the SQUIP side-channel leakage is precise
enough to recover full RSA-4096 keys with only 50 500
traces, with on average less than 5 (n = 10, σx̄ = 1.28)
bit errors across native processes and less than 18 (n =

10, σx̄ = 3.26) bit errors across virtual machines.
4) We present potential mitigations against SMT side chan-

nels on AMD CPUs.
Outline. Section 2 provides background on pipelines,
schedulers, and side channels. Section 3 presents the SQUIP
building blocks. Section 4 evaluates the performance in
covert channels. Section 5 evaluates SQUIP on mbedTLS
RSA. Section 6 discusses limitations and mitigations and
Section 7 related work. Section 8 concludes.
Responsible Disclosure. We reported leakage through the
SQUIP side channel to AMD on December 15th, 2021.
AMD acknowledged our findings and reserved CVE-2021-
46778 to this issue. We also reported the issue to Apple and
Arm on April 22nd, 2022 and to Intel on May 11th, 2022.

2. Background

In this section, we provide background about the CPU
pipeline, execution unit schedulers, and simultaneous mul-
tithreading.

2.1. CPU Pipelines

Modern CPUs use a superscalar design, where multi-
ple instructions are executed simultaneously to maximize
performance. Such CPUs process instructions in a pipeline
across several stages [8]: (1) fetch, (2) decode, (3) sched-
ule/execute and (4) retire. The schedule/execute stage can
process instructions out-of-order to maximize the instruction
level parallelism. We briefly describe each of these stages:
Fetch. The CPU fetches the next instruction to be executed
from the L1i cache. As branches can make the address of
the next instruction to be fetched unknown, the next address
is often predicted using the branch prediction unit.
Decode. To enable efficient execution, fetched instructions
(macro ops) are decoded into one or multiple simpler micro-
ops (µops) and placed into a µop queue. These µops are fed
into the backend, where they are scheduled and executed.
Schedule / Execute. The scheduler(s) tracks which µops are
ready for execution (have inputs available) and dynamically
schedules them (in an out-of-order manner) to available ex-
ecution units. A CPU core has multiple execution units and
can have multiple arithmetic and logic units (ALUs), branch
execution units (BRUs), address generation units (AGUs).
Figure 1 shows the connection between the schedulers and
execution units on Zen 2 and Zen 3. Once a µop has been
executed, and its output is written to a register and forwarded
to dependent µops, it is removed from the scheduler queue.
Retire. The retire queue hides the out-of-order execution
by ensuring executed µops are always retired in order. For
instance, a µop is retired only once all prior µops in program
order have been executed and retired.

2.2. CPU Scheduler Microarchitecture

The scheduler design is critical for maximizing the µop
throughput. A CPU can have a single scheduler, like Intel
CPUs [28] or multiple schedulers, like AMD [9], [10] and
Apple CPUs [30]. With an increasing number of execution
units, a single monolithic scheduler can become complex
and power intensive, necessitating multiple schedulers, one
per subset of execution units (or type of µop) [56], [66].

AMD Zen 2 has separate schedulers (ALQ0 to ALQ3)
for each ALU and a separate scheduler for all AGUs
(AGQ) [9]. AMD Zen 3 has separate schedulers for each
pair of ALU and AGU/BRU [10]. Apple M1 CPU is also
suggested to have distributed schedulers [30].

Each of these schedulers maintains separate queues from
where the µops are issued for the corresponding execution
units. On Zen 2 and Zen3, scheduler queues have 16 [9] and
24 [10] entries, respectively. If any one of these scheduler
queues (for any one type of µop) becomes full, this causes
a back-end stall, delaying the execution of subsequent µops
from the front-end.

2.3. Simultaneous Multithreading (SMT)

Even good scheduling and a large retire queue cannot
keep all execution units utilized all the time from a sin-
gle instruction stream. With simultaneous multithreading, a

Frontend
Instruction Stream 1 Instruction Stream 2

B
ac

ke
nd

µOPs

Retire Control Unit (RCU)

µOP µOP µOP µOP µOP

S S S S Scheduler
A

L
U

0

A
L

U
1

A
L

U
2

A
L

U
3

A
G

U
0

A
G

U
1

A
G

U
2

µOP µOP µOP µOP µOPs

(a) Zen 2 (c.f. [9])

Frontend
Instruction Stream 1 Instruction Stream 2

B
ac

ke
nd

µOPs

Retire Control Unit (RCU)

µOP µOP µOP µOP

Sched. Sched. Sched. Sched.

A
L

U
0

/
B

R
U

0
A

G
U

0

A
L

U
1

A
G

U
1

A
L

U
2

A
G

U
2

A
L

U
3

B
R

U
1

µOPs µOPs µOPs µOPs

(b) Zen 3 (c.f. [10])

Figure 1: Simplified core block diagrams for AMD Zen 2 and Zen 3.

CPU core is split into multiple logical cores or hardware
threads, executing independent instruction streams but shar-
ing resources such as the L1i cache. µops from these threads
share the execution units dynamically to enable higher total
utilization. The partitioning of different parts of the core
is done by competitively sharing, watermarking, or static
partitioning. The AMD Zen architectures allow two threads
per core. These threads can be from a single program or
from different programs, as managed by the OS.

2.4. Prior Microarchitectural Side Channels

Port Contention. If a scheduler is connected to multiple
execution units, this connection is established through so-
called ports. Each port can forward one µop per cycle to
an execution unit. If two programs running on two logical
cores of a physical core execute instructions requiring the
same port, the instructions of only one program can be
issued in any given cycle. Port contention causes delays for
instructions of the other program, which can be detected
through a timing side-channel. Prior works [5], [18] exploit
port contention on Intel CPUs to steal cryptographic secrets
by distinguishing timing differences of a few cycles.
Cache Contention. CPU caches such as L1 caches are
shared between multiple logical cores of a physical core,
while last-level caches (LLCs) are shared by many physical
cores. Contention for limited space within a cache set can
cause accesses by one program (or thread or VM) to evict
the address of another, causing an observable timing side
channel. The classic Prime+Probe attack, exploiting such
cache contention, has been shown to leak cryptographic
secrets through contention on L1 caches [48], LLC [39],
coherence directories [71], and others. Cache contention in-
troduces much higher timing differences (tens to hundreds of
cycles) that are more easily observable than port contention.
However, cache contention only leaks memory (or cache)
accesses of a victim program, whereas port contention ob-
serves a larger set of instructions.
Transient-Execution Attacks. Attacks like Spectre [32]
and Meltdown [38] exploit the fact that the CPU can tran-
siently execute operations that should not be executed. These
operations can be used to leak information during transient
execution through any microarchitectural side channel, such
as cache side channels or port contention [18].

3. Observing Contention on Scheduler Queues

In this section, we demonstrate how the behavior of
scheduler queues introduces interferences across workloads,
leveraging simple experiments and reverse engineering. We
provide methods to observe scheduler queue contention,
first, via performance counters, second, via unserialized
timer reads, and third, across sibling threads on the same
core. The SQUIP side-channel is based on the contention of
a queue (similar to a buffer or cache set) and follows the
attack principle of a Prime+Probe-style attack.

3.1. Single-Threaded Scheduler Queue Contention

In our first two experiments, we show that it is pos-
sible to deliberately induce and observe scheduler queue
contention with multiplications on a single hardware thread.

3.1.1. Observation Using Performance Counters. We
start by observing contention using performance counters on
an AMD Zen 3 Ryzen 7 5800X CPU. Each integer execution
unit (ALU) is associated with a separate scheduler queue
(see Section 2.2), and, importantly, these ALU execution
units can have different capabilities. For example, on AMD
Zen, Zen 2, and Zen 3 all four ALUs can perform addi-
tions and subtractions. However, multiplications, divisions,
and CRC operations can only be executed by one specific
ALU. In particular, multiplications can only be executed by
ALU1 [8], [9], [10] and, therefore, always use the same
scheduler queue.

To control scheduler queue contention, we first reverse-
engineer how the scheduler queue can be primed, i.e., how
we can fill it to its full capacity. Listing 1 shows the code
sequence used in this experiment. Note that the highlighted
lines are commented out. We will enable and explain them
in Section 3.1.2, yet for this first experiment, we want to
ensure that they do not interfere with our measurements.

We use a short loop to drain the backend here (lines 4
to 8), so that any previous outstanding operations can retire
before we start filling the queue. Later, for the actual attacks,
we replace this loop with a more efficient way to drain the
queue. As the priming step, we fill the scheduler queue
associated with ALU1, using a dependency chain [65],
which consists of:

1 # Set ecx = 1 for rdpru (APERF)
2 # movl $1, %ecx
3

4 # 1: Drain the scheduler queue
5 movl $10000, %eax
6 loop:
7 sub $1, %eax
8 jnz loop
9

10 # 2: Delay subsequent multiplications
11 movq $12345678, %r15
12 cvtsi2sd %r15, %xmm0
13 sqrtsd %xmm0, %xmm0
14 sqrtsd %xmm0, %xmm0
15 sqrtsd %xmm0, %xmm0
16 cvtsd2si %xmm0, %r15
17

18 # rdpru
19 # movl %eax, %ebx
20

21 # 3: Fill queue with n multiplications
22 imulq $3, %r15
23 imulq $3, %r15
24 imulq $3, %r15
25 imulq $3, %r15
26 imulq $3, %r15
27 # ... (contention if n > capacity(queue))
28

29 # rdpru
30 # subl %ebx, %eax

Listing 1: Causing scheduler queue contention with a
dependency chain.

No Stall

RCU

mul r8 rdpru ...

1© 3 2© 3

ALQ1 ALQ0/2/3

0: free
1: mul r8

2: mul r8

3: mul r8

4-15: mul r8

0: free

1:

2:

3:

4-15:

(a) No contention: ALQ1
has (at least) one free en-
try. The mul operation is en-
queued (1) and subsequently
the rdpru operation can also
be enqueued (2).

Stall

RCU

mul r8 rdpru ...

1© 7 2© 7

ALQ1 ALQ0/2/3

0: mul r8

1: mul r8

2: mul r8

3: mul r8

4-15: mul r8

0:

1:

2:

3:

4-15:

(b) Contention: ALQ1 is al-
ready full. Thus, mul can-
not be enqueued (1) before
there is a free entry. As oper-
ations are enqueued in-order,
rdpru (2) is delayed too.

Figure 2: Measuring scheduler queue contention via non-
serialized rdpru instructions.

1) A block of dependent, long-latency instructions that are
not occupying the targeted scheduler and produce an
integer result (lines 10 to 16).

2) A block of imul instructions, each depending on the
result of the previous instruction (lines 21 to 27).

This ensures that no single imul can execute before the
preceding long-latency block is finished. Thus, the chosen
number of multiplications stays in the scheduler queue for

16 18 20 22 24 26
0

0.5

1

⋅10
7

Number of multiplications

I
n
t
.
.
.
S
t
a
l
l rdpru disabled (3 sqrtsd)

rdpru enabled (3 sqrtsd)
rdpru enabled (6 sqrtsd)

Figure 3: The number of CPU cycles reported by
IntSch1TokenStall with scheduler queue contention
when executing 100 000 iterations of the priming code on
Zen 3 with varying lengths of the multiplication block
(sibling thread idle).

a prolonged period of time. By adjusting the number of
multiplications, we can cause different occupancy levels of
the scheduler queue. If we exceed the capacity of the queue
by trying to insert one more (dependent or independent)
operation into a full queue, the pipeline stalls until there is
at least one slot free again.

We want to emphasize that reordering µops is the task
of the schedulers (see Section 2.1). They keep track of
the dependencies and schedule the µops to the associated
execution units, possibly out of program order. In the RCU,
µops are still in program order and, thus, also added to the
scheduler queues in-order. Therefore, if a µop cannot be
enqueued because its designated queue is full, it blocks all
subsequent µops from being enqueued as well, stalling the
pipeline, see Figure 2. As the RCU cannot reorder µops, it
has to wait until the oldest µop can finally be enqueued.

We can maintain this scheduler queue contention situ-
ation until the long-latency instructions and, consequently,
the first multiplication of the imul block finish. This yields
a far longer time window to observe contention than other
SMT attacks, e.g., port contention [5].

To verify this, we use the IntSch1TokenStall per-
formance counter, introduced with AMD Zen 3 [7], [11]. It
counts the number of cycles with scheduler contention [11],
i.e., it increments for each cycle where µops could not
be dispatched because there were no free entries in the
scheduler queue of ALU1. We run 100 000 iterations of
Listing 1 with varying numbers of multiplications while
monitoring IntSch1TokenStall. Between 22 and 23
multiplications, we observe a substantial increase of the
performance counter, see the blue curve in Figure 3 (the
red and brown curves are explained in Appendix A). This is
very close to the 24 ALU1 entries of the Zen 3, indicating
that we can intentionally induce scheduler contention. In
this aspect, SQUIP is very similar to the Prime+Probe
attack on caches, where the eviction set size, depending on
the cache activity on a specific cache set, can be smaller
than the associativity of that cache. In contrast to Prime+
Probe attacks, we observed no cases requiring more than 24
multiplications to fill the ALU1 entries, as the dependency
chain makes the scheduler queue follow a first-in-first-out
policy (in contrast to complex cache replacement policies).

3.1.2. Observation Using Unserialized Timer Reads.
While the performance counter shows that we are indeed
observing scheduler queue contention, its use for practical
attacks is limited by the fact that access to CPU per-
formance counters requires root privileges on most Linux
systems [20]. Furthermore, this counter has only been intro-
duced with the Zen 3 microarchitecture and is unavailable on
Zen 2 [7]. Hence, we show that scheduler queue contention
can also be exploited by observing timing differences.

For precise timing measurements on x86-64, previ-
ous attacks, e.g., Flush+Reload [72], read the Time-Stamp
Counter (TSC) using the rdtsc instruction. However,
unlike on Intel and older AMD CPUs, the TSC on the
Zen microarchitectures updates only every 20 to 35 cy-
cles [36]. Instead, we use the Actual Performance Frequency
Clock Counter (APERF). Previous work [35] has shown
that it has an update interval of 1 cycle and can be read
cycle-accurately using the rdpru instruction. In contrast
to Lipp et al. [35], which required strict serialization of
rdpru, we, in fact, exploit that it is not serializing. There-
fore, rdpru can be executed out of order, and the APERF
counter can be read before all previous instructions have
been completed.

By uncommenting the highlighted lines in Listing 1, we
can observe that rdpru is executed in parallel. In line 2, we
initialize the ecx register to 1 to read the APERF counter.
The first rdpru instruction in line 18 runs in parallel to
the delay block and starts executing immediately after it has
been enqueued, as it does not depend on any long-latency in-
structions. Therefore, the order of both rdpru instructions
is preserved, even though they are not serializing.

If the multiplication block does not exceed the scheduler
queue capacity, the second rdpru instruction in line 29,
after the final multiplication, is also executed in parallel to
the multiplication block. We confirm this by investigating
the difference ∆t between the first and the second APERF
value, starting with only 11 multiplications and adding more
of them:
• If ∆t is small, the second rdpru was executed imme-

diately while the multiplication block was executing in
parallel, because rdpru is not serializing.

• If ∆t is large, the second rdpru was delayed until the
pipeline stall caused by exceeding the scheduler queue
capacity has been resolved by retiring multiplications.

Figure 4 shows the average timing difference ∆t over
100 000 runs. We can see a strong increase of ∆t at the
step from 22 to 23 multiplications on Zen 3, matching the
limit we found in the previous experiment. In contrast, on
an AMD Ryzen 7 3700X CPU (Zen 2), we see the same
increase at the step from 16 to 17 multiplications. Official
AMD documentation [9] states 16 entries as the capacity of
the ALU1 scheduler queue, exactly matching our result. This
experiment shows that we can indeed observe whether we
have exceeded the capacity of the multiplication scheduler
queue, with the code in Listing 1. We thus create a timing
side-channel signal where the second rdpru instruction is
either delayed (by a pipeline stall) or not, depending on the
occupancy level of the scheduler queue.

10 12 14 16 18 20 22 24 26
0

50

100

Number of multiplications

∆
t

(c
yc

le
s)

Zen 2
Zen 3

Comet Lake

Figure 4: Average timing differences (n = 100000) for
different lengths of the multiplication block on Zen 2, Zen
3, Comet Lake (sibling thread idle).

For comparison, we also ran a similar experiment on an
Intel Core i5-10210U CPU (Comet Lake). As this CPU does
not have the rdpru instruction, we use rdtsc here. On
Intel CPUs, it has a resolution between 1 and 3 cycles [36]
and is non-serializing [29], allowing for direct comparisons
with the measurements from the AMD CPUs. On Comet
Lake, we do not see any increase in Figure 4, as it uses a
single large scheduler for all execution units. This highlights
that SQUIP is different from port contention [5] and rather
follows the semantics of a Prime+Probe, namely on the
scheduler queue: While cache contention leads to evictions,
scheduler queue contention stalls the backend.

In Appendix A, we present supporting results to rule
out any interference from the rdpru instructions on the
observed capacity. In Appendix B, we perform additional
experiments on the contention of different scheduler queues,
but in the rest of the paper, we focus on the ALU1 that we
use for the RSA key recovery in Section 5. In Appendix C,
we show that the same measurement technique can also
be applied to the Apple M1, yielding comparable results.
However, as the following experiments require SMT, which
the M1 does not support, we focus on Zen 2 and Zen 3 for
the remainder of this paper.

3.2. Observing Activity of the Sibling Thread

We measure contention of the ALU1 scheduler queue
from a sibling thread on the same core, exploiting the
sharing of the scheduler queues across SMT threads.

3.2.1. Observing the Queue Watermark on Zen 3. If
we execute an empty, endless loop on the sibling thread
in parallel to the measurement code on Zen 2, we still
observe the same steep increase in the timing difference
∆t from 16 to 17 multiplications, as in the same-thread
measurements, see Figure 5. However, on Zen 3, we observe
a steep increase with fewer multiplications, between 18 and
21, showing that there are fewer scheduler queue entries
available for one thread if its sibling is busy. This result
is in line with AMD’s documentation, which states that
the schedulers are competitively shared on Zen 2 [9] and
watermarked on Zen 3 [10]. This watermark dedicates some
entries to each of the hardware threads. Only if the water-
mark threshold is exceeded, the threads use the remaining,
competitively shared entries of the scheduler queue.

10 12 14 16 18 20 22 24 26
0

50

100

150

Number of multiplications

∆
t

(c
yc

le
s)

Sibling idle (Zen 2) Sibling busy (Zen 2)
Sibling idle (Zen 3) Sibling busy (Zen 3)

Figure 5: Effect of an empty loop on the sibling thread on
the average timing differences on Zen 2 and Zen 3 (n =

100 000).

31,1
53

96,6
89

162,2
25

227,7
61

293,2
97

358,8
33

424,3
69

20
40
60
80

100

Time (cycles)

∆
t

(c
yc

le
s)

(a) Zen 2

44,1
49

109,6
85

175,2
21

240,7
57

306,2
93

371,8
29

437,3
65

50

100

Time (cycles)

∆
t

(c
yc

le
s)

(b) Zen 3

Figure 6: Observing multiplications on a co-located thread
via scheduler contention.

3.2.2. Observing Multiplications of a Co-Located
Thread. By measuring the available scheduler queue ca-
pacity, a receiver thread can detect multiplications executed
by a co-located sender thread on the same core: On Zen 2,
the receiver fills the scheduler queue to the overall capacity
and measures ∆t. If ∆t is high, the sender performed a
multiplication and, thus, occupied a scheduler queue entry
during the measurement. On Zen 3, the receiver fills the
scheduler queue to the watermark limit and measures ∆t. If
∆t is high, the sender performed multiple multiplications,
exceeding the watermark threshold and causing contention
on the competitively shared entries of the queue. In both
cases, if the sender performs a sufficiently high number of
multiplications, a co-located receiver can detect that.

We verify this with a proof-of-concept sender that gen-
erates an alternating sequence of high and low levels, each
for 65 536 cycles. For a high level, the sender repeatedly

runs a block of 15 dependent multiplications. For a low
level, the sender repeatedly runs a block of 15 nop in-
structions. On the receiver side, we repeatedly perform the
same measurement as before, using 16 (Zen 2) or 18 (Zen
3) dependent multiplications, respectively. To speed up the
measurement, we omit the delay loop at the beginning of
the measurement code in the receiver and replace it with
a final, independent multiplication after the second rdpru
instruction. If there was no contention before (caused by the
other thread), that last multiplication finally induces it. With
this, the CPU always stalls at the end of each iteration until
the sqrtsd instructions and at least the first multiplication
have finished. After the stall, the remaining multiplications
finish quickly, within 3 or 4 cycles [9], [10] each. This
effectively drains the scheduler queue before starting the
next iteration and removes the need for the delay loop from
the initial experiment (Listing 1).

For each measurement, we record the current APERF
time counter value and the timing difference ∆t. Figure 6a
shows the clear alternating levels on Zen 2, demonstrating
that a co-located receiver can indeed observe the multipli-
cations of the sender. We also performed this experiment on
a Zen 3 machine, using 18 multiplications in the receiver.
Here we get more noise for the high level, as shown in Fig-
ure 6b, as the watermark mechanism pulls several attempts
to transmit the high level down to the low level. However,
the low level is unaffected by the watermark mechanism,
making the two levels clearly distinguishable.

Finally, we investigated if this effect also applies to
the Apple M1. As the Apple M1 does not have SMT, it
is currently not possible to perform this experiment on it.
However, future Apple CPUs with SMT and split scheduler
queues would be affected by SQUIP in the same way.

4. Evaluating SQUIP Covert Channels
In this section, we evaluate the performance of the

scheduler queue side-channel, like state-of-the-art [23], [57],
[35], in covert channel scenarios across processes (see Sec-
tion 4.3) and across VMs (see Section 4.4).

4.1. Threat Model

For our SQUIP covert channels, we assume that sender
and receiver are co-located on different SMT threads of the
same physical core. We assume that the sender and receiver
are from different security domains with no legitimate com-
munication channel, in line with previous works on SMT
side channels [5], [64], [2], [4], [57], [63], [23], [62], [13].
Moreover, Linux still co-locates different security domains
on the same physical core by default [24]. Windows Server,
by default, avoids co-locating different virtual machines on
the same physical core [43]. We make no assumptions about
the CPU frequency of the targeted core.

4.2. Covert Channel Construction

In the following, we describe how the sender transmits
a message via scheduler contention, as well as how the

receiver samples, decodes, and reconstructs the message.
As the cross-VM scenario requires some parameter fine-
tuning, we start with the cross-process scenario and explain
the cross-VM changes later in Section 4.4.

4.2.1. Sender and Receiver Logic. In general, we encode
a ‘0’ as a low pressure on the scheduler queue of ALU1 and
a ‘1’ as a high pressure on that queue. The sender executes
loops of different instruction blocks, depending on the value
to send: To transmit a ‘0’, the sender executes 190 (Zen
2) / 410 (Zen 3) iterations of 15 nop instructions1 (low
pressure on the ALU1 scheduler queue). For a ‘1’, the sender
executes 38 (Zen 2) / 35 (Zen 3) iterations of 15 dependent
imul instructions on Zen 2 and 3 (high pressure on the
ALU1 scheduler queue).

The receiver repeatedly samples using the techniques
shown in the previous experiment, i.e., it runs a sequence of
dependent imul instructions with the timing measurements
before and after. If ∆t exceeds a certain threshold, indicating
high pressure on the scheduler queue and a pipeline stall, the
receiver records a ‘1’, otherwise a ‘0’. As the receiver is not
synchronized with the sender and runs faster, the receiver
samples each bit multiple times.

4.2.2. Channel Encoding. With an ideal transmission, each
bit would be received as a block of consecutive samples with
the same value. For noise resilience, the receiver considers
blocks shorter than lenmin = 4 samples as errors and
corrects them to the same value as the previous block.

To detect the start of the message and to determine how
many samples correspond to a ‘0’ and a ‘1’ in the receiver,
the sender transmits a preamble consisting of the bytes
\xff\x00\xaa\xaa before we send the actual payload.
The receiver observes the first byte of the preamble as a
long sequence of ‘1’ samples. After having seen at least
25 consecutive ‘1’ samples, the receiver assumes to have
received the start of the preamble. The second, zero-byte of
the preamble only separates the first from the third byte and
is not used otherwise.

The \xaa\xaa bytes in the preamble form an alter-
nating bit pattern, which the receiver uses to calculate the
average number of samples (i.e., iterations) representing a
single ‘0’ bit (len0) and a single ‘1’ bit (len1). Note that
we cannot include the last ‘0’ when calculating len0, as the
payload might start with a ‘0’. Instead, for the last bit of
the pattern, we just skip ahead len0 samples, and consider
the subsequent sample to be the start of the payload.

After this, the receiver reconstructs the payload by iter-
ating over the remaining samples. First, we infer each block
of consecutive samples of the same value (after performing
the lenmin correction). Based on whether the samples are
consecutive ‘0’s or ‘1’s, we then divide the number of
consecutive samples by len0 or len1 respectively, to get
how many ‘0’ or ‘1’ payload bits they correspond to.

To mark the end of the message, the sender transmits a
trailer of n ‘1’ bits. After the message transmission, the

1. We require more nop iterations in Zen3 to establish a sufficiently
large bit-period, as we observe nops execute faster on Zen3.

receiver only rarely observes contentions. Assuming the
receiver knows the approximate length of the transmission, it
can find the exact end of the payload by searching backward
through the recorded samples for the last n consecutive
‘1’s. Note that this block has to be long enough to be
distinguishable from occasional contentions caused by other
activity on the system. We observed that we can reliably
detect trailers with a length of 15 ‘1’ samples (approximately
n = 3, i.e., three ‘1’ bits).

4.3. Cross-Process Evaluation

We first evaluate the performance of the covert channel
in a cross-process setting on an AMD Ryzen 7 3700X (Zen
2) running Ubuntu 20.04 with Linux kernel v5.15.6 and on
an AMD Ryzen 7 5800X (Zen 3) running Ubuntu 20.04
with Linux kernel v5.16.13. We transmit 10 000 random
messages, each with a size of 32 768 bit. Receiver and sender
run in separate processes and are co-located on different
SMT threads on the same core.

In the cross-process setting, we use the same parameters
for the receiver as described in Section 3.2, priming the
scheduler queue with 16 (Zen 2) and 18 (Zen 3) imul
instructions that are delayed by 3 sqrtsd instructions. For
each iteration of the receiver, we drain the scheduler queue
by issuing a final imul instruction after the measurement.
We choose a ∆t threshold of 65 cycles on both machines,
which clearly distinguishes the contention and no contention
scenarios in Figure 4 and Figure 5.

On Zen 2, we achieve an average raw capacity of
2.19 Mbit/s (n = 10000, σx̄ = 0.002295) with an average
bit-error rate of 0.71 % (n = 10000, σx̄ = 0.0274).

On Zen 3, we achieve an average raw capacity of
2.70 Mbit/s (n = 10000, σx̄ = 0.000008) and an average
bit-error rate of 0.62 % (n = 10000, σx̄ = 0.0159).

4.4. Cross-VM Evaluation

To demonstrate that SQUIP also works across virtual
machine boundaries, we evaluated the performance of the
covert channel in a cross-VM setup, with sender and receiver
running in separate VMs. For our proof of concept, each
virtual machine has one virtual CPU (vCPU), statically
assigned to one SMT thread of a shared physical core.
We start using the same Zen 2 and Zen 3 hardware as
in Section 4.3. Finally, we evaluate the covert channel on an
AMD EPYC 7443 machine, with and without SEV enabled
on both VMs, showing that SEV does not prevent leakage
across VMs that allow SMT in their SEV policy (cf. [14]).

4.4.1. Adaptions for the Cross-VM Setup. One challenge
with this cross-VM setting is that KVM does not sup-
port rdpru inside virtual machines, and neither does Xen
4.16 [68]. Both hypervisors trigger an invalid instruction
exception if a virtual machine tries to execute rdpru. Fu-
ture versions may support rdpru, as unofficial patches [17]
already provide such support. However, to show that SQUIP
works across virtual machines on unmodified hypervisors,

TABLE 1: Parameters and results of the covert-channel evaluation.
Setup Receiver parameters Sender parameters Average results (n = 10000)

Scenario CPU Timing
method

Number of
sqrtsd

Number
of imul
(prime/drain)

∆t

Threshold

‘1’ samples
Preamble /
Trailer

Iterations
for ‘0’

Iterations
for ‘1’

Raw transmission rate Error rate

Cross-Process Ryzen 7 3700X (Zen 2) rdpru 3 16 / 1 65 25 / 15 190 38 2.195 Mbit/s (σx̄ = 0.002295) 0.71 % (σx̄ = 0.0274)
Ryzen 7 5800X (Zen 3) rdpru 3 18 / 1 65 25 / 15 410 35 2.700 Mbit/s (σx̄ = 0.000008) 0.62 % (σx̄ = 0.0159)

Cross-VM Ryzen 7 3700X (Zen 2) rdtsc 12 16 / 1 130 50 / 15 230 90 0.873 Mbit/s (σx̄ = 0.000031) 3.18 % (σx̄ = 0.0738)
Ryzen 7 5800X (Zen 3) rdtsc 12 15 / 27 150 50 / 55 1320 113 0.892 Mbit/s (σx̄ = 0.000039) 0.75 % (σx̄ = 0.0297)
EPYC 7443 (Zen 3) rdtsc 12 15 / 27 150 50 / 55 1250 113 0.874 Mbit/s (σx̄ = 0.000052) 0.96 % (σx̄ = 0.0398)

Cross-VM (SEV) EPYC 7443 (Zen 3) rdtsc 12 15 / 27 150 50 / 55 1250 113 0.873 Mbit/s (σx̄ = 0.000071) 1.47 % (σx̄ = 0.0639)

we let the receiver use the non-serializing [6] rdtsc in-
struction for timer reads instead.

As described in Section 3.1.2, rdtsc has a lower update
rate and is thus less precise. However, we can compensate
for a less precise timer by holding scheduler contention for
a longer period of time, by further delaying the dependent
multiplications with a longer chain of sqrtsd instructions.
This approach is similar to the extension of transient exe-
cution windows [69], [51] in Spectre attacks [32].

Furthermore, while the APERF counter frequency is tied
to the current frequency of the core, the TSC frequency is
constant and does not change with the CPU frequency [3].
In consequence, we observe that CPU frequency changes
affect the ∆t threshold and lead to transmission errors: With
a higher frequency, the CPU performs more operations per
TSC cycle, hence we require a lower threshold than with a
lower CPU frequency. If the threshold is too high, we do not
detect scheduler contention and we only receive ‘0’s. On the
other hand, if the threshold is too low, the observed times
are above the threshold even without contention, resulting
in only ‘1’s. However, with 12 (Zen 2 and 3) sqrtsd
instructions, we can amplify the timing difference between
the ‘0’ and ‘1’ cases enough, so that a threshold of 130
(Zen 2) / 150 (Zen 3) works with both, the minimum and
the maximum CPU frequency. Additionally, before starting
the actual transmission, the sender and the receiver execute
a delay loop, stabilizing the CPU frequency beforehand.

An interesting observation on Zen 3 was that, using
rdtsc instead of rdpru in the receiver together with
18 dependent multiplications to measure ALU1 contention,
similar to the cross-process setup in Section 4.3, resulted in
receiving all ‘1’s erroneously due to spurious contentions.
This was the case even if both the sender and the receiver
ran natively on the host. We suspect the reason for this is
that rdtsc on Zen 3 is a complex microcode-assisted [10]
instruction that probably requires ALU1 for execution, and
thus shares the scheduler queue with the multiplications,
leaving fewer slots for the multiplications. Note that we have
not seen such an effect on Zen 2.

To work around this issue on Zen 3, we use only 15
dependent multiplications between the rdtsc instructions
of the receiver. Consequently, to drain the scheduler queue
after each measurement, we now have to issue more multi-
plications after the second rdtsc instruction. In our case,
we use a chain of 27 multiplications, which depend on a
single load of an immediate value into a register. With this,
we no longer observe spurious stalls on Zen 3.

Another challenge we face in this setting is increased
measurement noise with one vCPU per VM, as now one

hardware thread has to handle the housekeeping tasks of
both the hypervisor and the guest operating system. This
can cause the receiver and the sender to be interrupted more
frequently, resulting in more errors like missed samples (if
the receiver is interrupted) or inserted zeroes (if the sender
is interrupted) [41]. Some of these errors are overcome with
techniques described in Section 4.2, using multiple samples
for each bit and correcting blocks shorter than lenmin . This
makes the channel more robust against short interruptions,
but it cannot correct longer interruptions.

We observed that we have to increase the number of
iterations in the sender for each ‘0’ and ‘1’ of the message
(see Table 1), to achieve a reliable transmission. In the
first test runs, we furthermore observed that the preamble
was sometimes detected too early and that the trailer was
sometimes detected too late, both due to occasional bursts of
contentions. To address this problem, we increase the num-
ber of consecutive ‘1’ samples the receiver has to observe
to detect the preamble and the trailer.

4.4.2. Results. Using the parameters from Table 1, we
achieve an average raw capacity of 0.87 Mbit/s (n = 10000,
σx̄ = 0.000031) with an average bit-error rate of 3.18 %
(n = 10000, σx̄ = 0.0738) on the Ryzen 7 3700X (Zen 2).

On the Ryzen 7 5800X (Zen 3), we achieve an average
raw capacity of 0.89 Mbit/s (n = 10000, σx̄ = 0.000039)
and an average bit-error rate of 0.75 % (n = 10000, σx̄ =

0.0297).
In addition to the Ryzen 7 3700X (Zen 2) and Ryzen

7 5800X (Zen 3) machines, we also evaluated the covert
channel on an EPYC 7443 machine supporting AMD SEV.
With AMD SEV, the memory content of each virtual ma-
chine is encrypted with one separate key per guest, isolating
virtual machines from each other and the host [12]. We
achieve a raw capacity of 0.87 Mbit/s (n = 10000, σx̄ =

0.000071) at a bit-error rate of 1.47 % (n = 10000, σx̄ =

0.0639) with SEV enabled for both VMs. This shows that
the isolation provided by SEV does not prevent leakage via
SQUIP. For comparison, we repeated this experiment with
SEV and memory encryption both disabled, yielding the
same capacity at a slightly lower error rate of 0.96 % (n =

10000, σx̄ = 0.0398).
Table 1 summarizes the results and parameters used for

each machine and in each setting. Table 2 in Appendix D
compares the bit rate in the cross-VM covert-channel setting
for SQUIP with state-of-the-art cross-VM covert channels.
We highlight that our covert channel is among the fastest of
them, as it does not require complex eviction strategies or
memory accesses (only requires low latency ALU instruc-

tions) and produces a low-noise signal. One limitation of
our channel is that it only works across SMT threads and
not cross-core, unlike some prior covert channels.

5. Side-Channel Attacks on Scheduler Queues

In this section, we show the significance of the scheduler
queue side channel in a practical attack on the RSA signature
process of mbedTLS [15] (version 3.0.0) on an AMD Ryzen
7 5800X CPU (Zen 3). We recover a full RSA private key
with only 50 500 traces. We demonstrate our attack across
processes and across KVM virtual machines.

5.1. Threat Model

The unprivileged attacker’s goal is to steal the RSA
secret key from the victim process. Following the threat
models of state-of-the-art SMT attacks [5], [53], [18], [63],
[57], we assume that the attacker and victim are co-located
on the same physical core but run on different SMT threads.
The victim performs a signature process that the attacker can
trigger via a legitimate interface (e.g., a signing service) an
arbitrary number of times. We assume that the attacker can
make side-channel observations throughout the square-and-
multiply algorithm (e.g., the start and end of square-and-
multiply are detected using timing or a side channel).

5.2. Environment

Various libraries implement the RSA algorithm like
OpenSSL [45], IntelIPP [27] and mbedTLS [15]. We attack
the mbedTLS implementation following previous work [59].
mbedTLS implements the RSA algorithm via a sliding
window Montgomery modulo exponentiation algorithm [42].
The sliding-window exponentiation combines multiple key
bits to optimize performance. The default window length in
mbedTLS increases with the key length. However, Liu et al.
[39] show that attacks on window length ‘1’ can be extended
to an arbitrary length. Therefore, we set the window length
to ‘1’ while attacking RSA-4096. Note that the mbedTLS
implementation does not use distinct functions for square
and multiply but reuses the multiplication function. For both
the cross-process and the cross-VM attack, we again make
no assumptions about the CPU frequency.
Cross-Process Setup. For the cross-process attack setup,
we only assume that the attacker and the victim run co-
located, without any further restrictions. This is possible
on Linux by default [24] if the application has not set
PR_SCHED_CORE via prctl. We scanned the source code
of OpenSSL 3.0.4, OpenSSH 9.0, QEMU 7.0.0, and Firefox
99.0, and did not find these calls in any of them, making
co-location a realistic scenario for the cross-process setting.
Cross-VM Setup. For the cross-VM attack, the attacker
and the victim process run in separate virtual machines, but
instead of a single vCPU per VM as in Section 4.4, we now
run the virtual machine with two vCPUs. In the attacker
VM, the attacker assigns one vCPU for the attacker process,

and the other for housekeeping tasks of the hypervisor and
the guest operating system. We assume that in the victim
VM, the victim process is pinned to one vCPU, which helps
avoiding unnecessary movements of tasks between hardware
cores and, thus, cold caches, i.e., it is plausible to find this
configuration in practice. We make no assumptions about
the other vCPU of the victim. We assume and focus on
the setup where the attacker has achieved co-location [26]
with the victim such that the RSA computation runs on
the same physical core (on a sibling SMT thread) as the
attacker’s SQUIP attack. To reduce interference from other
tasks and timer interrupts, we enable the full task-isolation
mode [55] in the guest and the host. This avoids interference
from operating system or hypervisor tasks. Note that this
is not a requirement for the attack, as filtering techniques
(as described by Yarom et al. [73]) can also be used for
timing measurements degraded by timer interrupts. Previous
work has shown that achieving co-location in the cloud is
possible [26]. While larger cloud providers will avoid co-
location of different tenants on the same core, with the
associated performance cost (see Section 6.2), smaller cloud
providers may not have the margins to pay this performance
cost and, therefore, may not use the co-scheduling approach.
Furthermore, also on private servers or personal computers,
where co-scheduling is not enabled by default, virtual ma-
chines are used for security (isolation) in practice.

5.3. SQUIP Attack on RSA

In our attack, we target the mul instructions exe-
cuted during the multiplication function of the square-and-
multiply algorithm. In particular, for a ‘0’ in the exponent,
the multiply function is only executed once (square),
whereas, for a ‘1’, it is called twice (square and mul-
tiply). This results in more multiplications for a ‘1’ in
the exponent and, therefore, a higher chance to observe
scheduler queue contention. The second additional invo-
cation of the multiply function in the ‘1’ case has a
different parameter, also changing the microarchitectural
behavior of that second invocation. It is important to note
that the multiply function will effectively perform more
than just a single integer multiplication. Consequently, the
occupancy level in the ALU1 scheduler queue varies over
time, depending on the value of the secret bit. If the attacker
can observe these differences, they can directly infer the
exponent, i.e., the private key.

Using the SQUIP side channel, we create a contention
profile, observing the probabilities for scheduler contention
over the execution time of the square-and-multiply algo-
rithm. Such a contention profile is formed by multiple traces:
For each trace, we continuously monitor the scheduler queue
of ALU1 using the SQUIP measurement code, while the vic-
tim is executing the square-and-multiply algorithm. Again,
if the observed ∆t exceeds a certain threshold, we record
that sample as a ‘1’, otherwise as a ‘0’.

To compensate for run-time variations (e.g., due to
varying clock frequencies), we stretch each trace to a fixed
length, uniformly filling the resulting gaps with ‘0’s. We

do not use any interpolation between the samples as we do
not want to lose precision in the timing information of the
observed ‘1’s. Finally, we compute the contention profile by
adding up the stretched traces, sample by sample.

Given enough traces, even slight differences in the con-
tention probabilities between the two cases become visible
in the contention profile. We observed stable results with
5000 traces and 50 additional warmup rounds.

On Zen 3, the scheduler queue of ALU1 has a watermark
limit of 18 (see Section 3.2), implying that the attacker
cannot fill the queue completely when priming the scheduler
queue. In consequence, the attacker can only observe a
stall if the victim has at least 23 − 18 = 5 operations
enqueued at the same time. We observed that the probability
for that is higher during the ‘multiply’ step than during the
‘square’ step in the square-and-multiply implementation of
mbedTLS. Consequently, the ‘multiply’ steps show up as
peaks in our contention profiles.

5.3.1. Trace Recording. For each key, we generate 10
contention profiles. For each profile, we collect 5050 traces.
Thus, in total, we record 50 500 traces. The first 50 traces of
each recording serve as a warmup phase and are discarded,
i.e., only the remaining 5000 traces are actually used per
contention profile. Out of the 10 contention profiles, we use
the best one for key extraction, as explained subsequently
in Section 5.4.

For each trace, the attacker repeatedly executes the
SQUIP measurement code while the victim is performing
the RSA signature, recording the samples as a trace, from
the start to the end of a victim’s execution of the square-
and-multiply algorithm. As with the covert channels shown
before, if the observed ∆t exceeds a threshold of 65 cycles
(cross-process) or 200 cycles (cross-VM), the attacker stores
that sample as a ‘1’. Otherwise, it is stored as a ‘0’. After
recording each trace, we stretch it to a length of 2 700 000
samples and add it to the contention profile.

Our first proof-of-concept attack runs in the cross-
process setting, in which the attacker uses the same pa-
rameters as the receiver in the covert channel, i.e., 18 de-
pendent multiplications, delayed by 3 sqrtsd instructions,
again with one final multiplication after the second rdpru
instruction to drain the queue. To increase the chances of
observing contention for a ‘1’ but not for a ‘0’, we perform
dummy memory operations between each sampling period.
This gives the CPU time to drain the scheduler queue from
the last ‘1’ so that we are at the same occupancy level
again for the next bit. In the cross-VM setting, we observed
more noise, i.e., higher occupancy levels on the scheduler
queue, such that 14 dependent multiplications were already
sufficient, albeit delayed by 12 sqrtsd instructions to
extend the contention window. We also observed that we can
significantly reduce the timing jitter if we replace the final
multiplications after the second rdpru with an lfence.

5.3.2. Trace Postprocessing. We extract the key from
the contention profile in a postprocessing step. To re-
duce the impact of outliers, we compute a simple mov-

1.266 1.268 1.270 1.272 1.274 1.276 1.278 1.280 1.282
⋅10

6

30

35

40

45

50
1 1 1 1000 1 100 100 1 100000 1 1000

Sample Number

C
on

te
nt

io
ns

(S
M

A
1
1
1

)

(a) Cross-Process

1.328 1.330 1.332 1.334 1.336 1.338 1.340
⋅10

6

2

3

4

5 1
1 1 1 1000 1 100 1000 1000 1

Sample Number

C
on

te
nt

io
ns

(S
M

A
9
0

)

(b) Cross-VM. The absolute height of the peaks, which corre-
sponds to the number of scheduler contentions, is approximately
10 % of those in the cross-process scenario.

Figure 7: The peaks show a higher number of contentions
because of the ‘1’ multiply. The time difference between
two peaks is directly related to the number of ‘0’s between
two ‘1’s. The peak labels denote the recovered key bits. The
plot is from the center of the contention profile. The peaks
become sharper and higher on both sides.

ing average (SMA), resulting in the signals shown in
Figure 7. We observe a clear difference in the number
of contentions caused by the multiply(x,x) and the
multiply(x,a), which is only executed for a ‘1’. The
multiply(x,a) causes contentions with a slightly higher
probability, resulting in the peaks. With these peaks, we can
clearly see the ‘1’s in the exponent and also distinguish
multiple succeeding ‘1’s. To extract the ‘0’s of the key, we
measure the distance between the peaks. From the minimal
distance between two peaks in the signal, we can infer the
duration of processing a ‘1’, which is double that of a ‘0’.
If two peaks are further apart than this minimal time, the
number of ‘0’s in between is computed from the distance.

We automate the postprocessing in Python with the help
of the SciPy library. To find the peaks corresponding to
the ‘1’s, we use SciPy’s find_peaks function. Due to
the normalization of each trace’s time domain and runtime
differences, the traces have near-perfect alignment at the
start and end. However, they degrade in the middle, influenc-
ing the sharpness and height of the contentions peaks. The
find_peaks function requires well-chosen parameters to
return a valuable and reliable result, and these parameters
change significantly throughout the trace because of the
changing peak heights. We split the trace into five parts and
chose different find_peaks parameters for every part.

Our key extraction process is fine-tunable via additional
parameters, including the window size of the moving av-
erage and factors to refine the extraction of ‘0’s from the

duration between peaks. All parameters are shown in Table 3
in Appendix F.

This parameterization allows us in a last step to auto-
matically optimize the extraction result with an evolutionary
optimization algorithm. We split a data set of different mea-
sured RSA keys into a training and validation set to optimize
our parameters and an evaluation set for our final evaluation.
During the optimization, we first randomize the parameters
and then optimize multiple sets of parameters with SciPy’s
optimize function. The fittest group of parameters is
selected by the lowest edit distance of the extracted key,
mutated multiple times, and each set is optimized again.
The fitness converged after approximately ten generations.

5.4. Evaluation

We evaluate the attack across processes and across VMs
as described in the following.
Optimizing the Postprocessing Parameters with Training
Keys. First, we create a set of 10 training keys using
openssl genrsa. For each of these 10 training keys,
we record 10 contention profiles, using 5000 traces and
50 warmup rounds for each profile. Out of the resulting
contention profiles, we choose the best profile for each key.
The best profile is defined by the quality and quantity of
the peaks we find with find_peaks. A higher number of
peaks is better if it is in the range of the expected number
of peaks, around 2100. As bad contention profiles can have
a very high number of peaks, mainly consisting of noise,
these profiles are excluded. The quality is defined by the
“prominence” i.e., the height of the peaks in relation to their
surrounding baseline. The weighting of the number of peaks
and prominence for the final contention profile quality was
defined empirically and is different for the cross-process and
cross-VM profiles.

With the 10 best contention profiles, we build a training
set of 6 profiles and a validation set of 4 profiles for the
evolutionary optimization algorithm.
Extracting Evaluation Keys. After optimization, we create
a fresh set of 10 new evaluation keys, again using openssl
genrsa. For each evaluation key, we again record 10
contention profiles, again using 5000 traces and 50 warmup
rounds for each profile. We choose the best contention
profile for each key. With the chosen contention profile, we
then apply our postprocessing to extract the key. Finally, we
compute the edit distance between the actual ground truth
key and the extracted key.
Results for the Cross-Process Scenario. In the cross-
process scenario, we can extract the evaluation keys with
an average edit distance of 4.9 bit (n = 10, σx̄ = 1.28). This
corresponds to an error rate of less than 0.12 %. Our best
result is one key without any errors and three keys with an
edit distance of only 2 bit. Our worst result is one key with
an edit distance of 15 bit.

Recording a single contention profile takes 244.41 s (n =

100, σx̄ = 0.1911) on average. Consequently, recording the
10 contention profiles we require for a key takes about
41 min. Given the strong signal and the low error rate, we

consider it possible to reduce the required time even more
by reducing the number of traces used for the contention
profiles or by recording fewer profiles to select from, at the
cost of a possibly higher error rate.
Results for the Cross-VM Scenario. In the cross-VM
scenario, we can extract the evaluation keys with an average
edit distance of 17.8 bit (n = 10, σx̄ = 3.26), corresponding
to an error rate of less than 0.5 %. Our best results are two
keys with an edit distance of 8 bit. Our worst results are one
key with an edit distance of 28 bit and one with 43 bit.

Recording a single contention profile takes 230.12 s (n =

100, σx̄ = 0.1238) on average in the cross-VM setting. Con-
sequently, recording the 10 contention profiles we require
for a key takes about 38 min.

6. Discussion and Limitations

As shown, using the SQUIP side channel, an unprivi-
leged attacker can extract sensitive information from a co-
located victim within less than 45 min, achieving very low
error rates. In this section, we discuss the limitations of our
attack and possible hardware and software countermeasures.

To summarize, the SQUIP attack exploits 1) that the
ALUs are connected to different schedulers, 2) that the
ALUs have different capabilities, 3) that co-located pro-
cesses compete for free slots in the scheduler queues and
4) that the control flow of the RSA implementation is
secret-dependent. Without any of these four prerequisites,
the demonstrated attack no longer works, so that possible
countermeasures can target all of them.

6.1. Hardware Countermeasures

Future CPU designs can avoid being vulnerable to the
SQUIP attack by 1) using a single scheduler design, 2) mak-
ing the schedulers symmetric, or 3) isolating hardware
threads more strictly in the scheduler queues.
Single Scheduler Design. Single scheduler designs such
as Intel’s are not affected by SQUIP, as the single sched-
uler does not differentiate between different µops. However,
there may be costs in terms of complexity and power for
unified schedulers, as the scheduling algorithm input size
(queue sizes and the number of functional units) grows [66],
necessitating distributed scheduler designs in the future.
Symmetric Scheduler Design. Another approach might be
a design with multiple schedulers, where there is no differ-
ence in the capabilities of the ALU(s) connected to each of
them. With such a symmetric design, it is no longer possible
to specifically target one scheduler queue, as operations
are now distributed over all available queues. Consequently,
an attacker can no longer deduce that a specific group of
operations is performed, and the attack no longer works.
Stricter Partitioning Mechanisms. As the scheduler
queues are only shared between threads of the same core
and not between cores, an attacker can only observe the
scheduler queue usage of a co-located victim. Our attack
does not work on Apple’s M1, as it does not support SMT.

However, if future Apple CPUs support SMT and keep the
split scheduler design, they might also be affected.

Future CPU designs might consider more strict parti-
tioning mechanisms [62], also for the scheduler queues. For
example, with static, spatial partitioning and two hardware
threads, a single thread can only occupy at most half of the
capacity of a resource [62]. With a scheduler queue size of,
e.g., 16 slots, each thread can always use at most 8 of them.
The capacity available to one thread is, therefore, com-
pletely unaffected by the scheduler queue usage of the other
thread. Consequently, an attacker can no longer monitor the
other thread, and our attack will not work, either. Adaptive
partitioning is another, more sophisticated mechanism that,
however, does not entirely prevent leakage [62].

6.2. Software Mitigations

In this subsection, we discuss three mitigation possibili-
ties. First, security-critical software can protect itself by en-
suring secret-independent execution flow with constant-time
implementations. Second, as a more hypothetical option, we
also briefly discuss exploiting the watermark mechanism for
protection. Third, operating systems can protect against the
attack by either disabling SMT or by using co-scheduling.
Constant-Time Algorithms. With our attack, we exploit
that mbedTLS performs more multiplications for a ‘1’ in
the key than for a ‘0’. Secret-dependent control-flow like
this, where different instructions are executed depending
on a secret value, has been attacked using various other
side channels in previous works [48], [72], [39], [5], [37].
Most of these works [48], [72], [39], [5] recommend using
constant-time cryptography algorithms, such as square-and-
multiply-always, to mitigate the attacks. These algorithms
ensure that the execution flow is independent from secret
input, so that always the same instructions are executed.
With this, we can no longer distinguish a ‘1’ from a ‘0’
and our attack no longer works. However, attacks on non-
cryptographic software, which cannot be implemented in
constant time (e.g., user input), might be possible too, so
this mitigation might be incomplete.
Exploiting the Watermark Mechanism on Zen 3.
Security-critical software could leverage the watermark
mechanism on Zen 3 (see Section 3.2.1) by ensuring that its
usage of the critical scheduler queue remains too low for an
attacker to observe. For example, inserting some dummy in-
structions into a code path containing many multiplications
could space out the multiplications and keep their queue
usage below the watermark limit. However, this mitigation
would be very specific to the Zen 3 microarchitecture, as the
scheduler queues are not watermarked on Zen 2, and future
CPUs might have different watermark limits. Furthermore,
unlike constant-time algorithms, this would not help against
other side channels. Because of these limitations, we did not
further investigate this approach.
Disabling SMT. Various works [2], [5], [64], [25], [73],
[44] have shown attacks on SMT before. Furthermore,
Taram et al. [62] have analyzed contention-based covert
channels on SMT CPUs, albeit without considering the

scheduler queues as a possible attack target. Consequently,
some operating systems warn about SMT or even disable it
by default [31] on Intel CPUs. As most academic offensive
research has focused on Intel CPUs, the severity of the threat
has thus far been less clear on AMD CPUs – so SMT is
still enabled there by default, because it accelerates certain
workloads significantly: In a 2005 study, when enabling
SMT, Ruan et al. [54] observed a speedup of 1 % to 15 %
on a dual-CPU Xeon system running the Specweb99 [60]
web server benchmark. In 2018, Phoronix [33] published a
direct comparison for various workloads on an Intel Coffee
Lake CPU, showing SMT speedups of up to 30 % for certain
workloads like 3D rendering or code compilation. In 2020,
Cutress [19] performed such a comparison specifically for an
AMD Zen 3 CPU, showing SMT speedups of up to 34 % for
data compression and up to 26 % for 3D rendering. However,
disabling SMT comes at the cost of reducing performance
and it can reduce measurement noise in other attacks [50].
Furthermore, while we focus on exploiting scheduler queue
contention in cross-SMT scenarios, single-threaded attacks
exploiting scheduler queue contention may also be possible.
Co-Scheduling. A more fine-grained approach would use
co-scheduling [47] (or core-scheduling [34]), also on AMD
CPUs. With co-scheduling, processes from different se-
curity domains are prevented from running co-located on
the same core, effectively defeating our attack. During the
development of the core-scheduling feature for the Linux
kernel, Faggioli [21] performed an extensive performance
evaluation with several standard benchmarks. His evalua-
tion included an over-committed scenario, where two VMs
with 8 VCPUs were run on a quad-core host with two
SMT threads per core. One of these VMs generated CPU,
memory and I/O stress, while he ran the benchmark in the
other VM. With the STREAM benchmark, he observed a
performance drop between 26 % and 32 % when disabling
SMT, which is in line with the results cited in the section
before. When enabling core-scheduling, so that only VCPUs
of the same VM can share the same core simultaneously,
he only observed a performance drop between 12 % and
20 %. In contrast, with sysbench, he observed a performance
loss of 8 % to 53 % when disabling SMT, while core-
scheduling resulted in performance losses between 19 % and
91 %. These results indicate that the performance loss from
disabling SMT or enabling co-scheduling is highly workload
specific, thus we unfortunately cannot give general guidance
for all workloads. Also, like disabling SMT, co-scheduling
cannot prevent potential single-threaded attacks.

7. Related Work

Resource conflicts on SMT CPUs have already been
exploited in previous side-channel attacks. In this section,
we summarize and discuss such related work.

7.1. Prime+Probe

Prime+Probe exploits the limited capacity of CPU
caches [46], [48], [39]. The attacker first primes the cache

by filling it with its own data. After the victim process has
been executed for a short time, the attacker probes the cache
by timing memory loads, to observe which of the previously
primed cache sets have been evicted by the victim accessing
congruent memory addresses. While the first Prime+Probe
attacks were single-threaded [46] or limited to co-located
processes [48], they were later extended to work across
cores, by attacking the shared LLC [39]. Other Prime+
Probe-style attacks target coherence directories [71], branch
prediction caches [1] or translation lookaside buffers [25]
instead of the memory caches.

Our SQUIP attack follows a scheme similar to Prime+
Probe, as we also prime a capacity-limited resource (i.e.,
a scheduler queue) and use timing differences to probe for
resource usage conflicts. As we target the scheduler queues,
which are exclusive to the physical core, we cannot extend
our attack to work across cores.

7.2. SMT Attacks

The co-location of two threads on the same core with
SMT can be exploited in different ways.
Port Contention. Aldaya et al. [5] (and prior works [64],
[2]) observe the contention of ALU ports instead of the
scheduler queue. They run their PortSmash attack on an
Intel CPU that has a single-scheduler design but also ALUs
with different capabilities. In their side-channel attack, they
profile the port usage of a victim on a target port. To
detect port usage of the victim, they choose an instruction
executed on the same port simultaneously and measure the
time over a block of that instruction. With this approach,
they observe that the throughput for that instruction type is
halved for the attacker when the victim also runs similar
instructions simultaneously, as that port is now effectively
multiplexed between the attacker and the victim process.
Using this observation, they attack an OpenSSL P3-384
ECDSA signature process.

In contrast to port contention, which only delays attacker
operations of the same type as the victim operation, SQUIP
delays the execution of all subsequent operations regardless
of the type. These pipeline stalls are much easier to observe.
Moreover, our attacker can surgically control the length of
the delay for the multiplications, using a dependency chain
of sqrtsd – this makes the delay more easily observable
even when the timing measurements are less precise (e.g.,
rdtsc from within a VM). Lastly, with a single measure-
ment, we only observe whether scheduler queue contention
caused a pipeline stall or not. So a single measurement
is sufficient to distinguish between only two latency levels
(much like a cache hit and miss), unlike PortSmash, which
requires inference of a decrease in port bandwidth that
requires many measurements to ascertain reliably.

Bhattacharyya et al. [18] demonstrate that port con-
tention can be exploited in Spectre [32] gadgets. Compared
to the original Spectre attack that leaked information via
a cache side channel, they leaked information via a port
contention side channel. Similarly, our scheduler contention

side channel, SQUIP, can also be used as a channel to leak
information in Spectre gadgets.
Attacks on Other SMT Shared Resources. Aimonio-
tis et al. [4] show that reorder-buffer contention can leak
information, yet they do not demonstrate a full attack.
Yarom et al. [73] induce L1 cache bank conflicts to recover
a 4096 bit RSA key. We demonstrate an orthogonal vulner-
ability with a split scheduler queue design in multiple gen-
erations of AMD CPUs and Apple CPUs, and demonstrate
that it can leak RSA keys on an AMD Zen 3 CPU.
Generalized Approaches. Fogh [23] introduced Covert
Shotgun, an automated SMT covert channel finder. In the
sender, Covert Shotgun runs a loop of a chosen “signal
instruction”. In the receiver, it measures the execution time
of a chosen “receiver instruction”. Covert Shotgun repeats
this process with different instruction combinations. Note
that for the SQUIP side channel, we have to prime the
scheduler queue. As Covert Shotgun does not do any specific
preparation before running the receiver instruction, it cannot
find our SQUIP side channel automatically.

Taram et al. [62] systematically analyzed SMT-enabled
CPUs for contention side-channels and evaluated multiple
hardware mitigation strategies. However, they based their
analysis on a single-scheduler design, so they have not
considered split scheduler queues and different capabilities
of the associated ALUs as a possible security risk.

8. Conclusion

In this paper, we introduced the SQUIP attack. SQUIP
is the first side-channel attack on scheduler queues, which
are separate per execution unit on Apple M1, AMD Zen
2, and Zen 3 microarchitectures. We reverse-engineered
the behavior of the scheduler queues on these CPUs and
showed how they can be primed and probed. We evaluate
the SQUIP attack across SMT threads in different scenarios
on AMD Zen 2 and Zen 3 CPUs. First, a covert channel to
measure the bandwidth of the side channel. We were able
to transmit 0.89 Mbit/s across virtual machines at an error
rate below 0.8 %, and 2.70 Mbit/s across processes at an
error rate below 0.8 %. In our full side-channel attack on an
mbedTLS RSA signature process, we can recover the full
RSA-4096 key with only 50 500 traces and less than 5 to 18
bit errors on average across processes and virtual machines.
Our work highlights that pipelines with multiple scheduler
queues have to be reevaluated for security and future CPUs
need mitigations to prevent our attack.

Acknowledgments

We thank the reviewers and our shepherd for their valu-
able feedback. We also thank Moritz Lipp, Claudio Canella
for their valuable input and Jonathan Montineri for help
with initial experiments. Part of the funding was provided
by generous gifts from Amazon and Red Hat. Any opinions,
findings, conclusions, or recommendations expressed in this
paper are those of the authors and do not necessarily reflect
the views of the funding parties.

References

[1] O. Acıiçmez, c. K. Koç, and J.-p. Seifert, “On the Power of Simple
Branch Prediction Analysis,” in AsiaCCS, 2007.

[2] O. Acıiçmez and J.-P. Seifert, “Cheap Hardware Parallelism Implies
Cheap Security,” in FDTC, 2007.

[3] Open-Source Register Reference For AMD Family 17h Processors
Models 00h-2Fh, 3rd ed., Advanced Micro Devices Inc., 7 2018.

[4] P. Aimoniotis, C. Sakalis, M. Själander, and S. Kaxiras, “Reorder
Buffer Contention: A Forward Speculative Interference Attack for
Speculation Invariant Instructions,” IEEE Computer Architecture Let-
ters, vol. 20, no. 2, pp. 162–165, 2021.

[5] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port Contention for Fun and Profit,” in S&P, 2019.

[6] AMD, “AMD64 Architecture Programmer’s Manual,” 2017.

[7] ——, “Processor Programming Reference (PPR) for AMD Family
17h Model 01h, Revision B1 Processors,” 2017.

[8] ——, “Software Optimization Guide for AMD EPYC 7001 Proces-
sors,” June 2017.

[9] ——, “Software Optimization Guide for AMD EPYC 7002 Proces-
sors,” March 2020.

[10] ——, “Software Optimization Guide for AMD EPYC 7003 Proces-
sors,” November 2020.

[11] ——, “Processor Programming Reference (PPR) for AMD Family
19h Model 21h, Revision B0 Processors,” 2021.

[12] ——, “AMD Secure Encrypted Virtualization (SEV),” 2022.
[Online]. Available: https://developer.amd.com/sev/

[13] ——, “PortSmash Mitigations,” 2022. [Online]. Available: https:
//www.amd.com/en/support/kb/faq/pa-210

[14] ——, “SEV Secure Nested Paging Firmware ABI Specification,”
January 2022.

[15] ARM, “mbed TLS,” 2020. [Online]. Available: https:///tls.mbed.org

[16] ——, “Arm Architecture Reference Manual for A-profile architec-
ture,” Feb 2022.

[17] J. Beulich and A. Cooper, “[v3,7/8] x86emul: support RDPRU,” Sep
2019. [Online]. Available: https://patchwork.kernel.org/project/xen-
devel/patch/1fc41c75-7e6d-5a34-c500-8f769e4374bb@suse.com/

[18] A. Bhattacharyya, A. Sandulescu, M. Neugschwandt ner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting
speculative execution through port contention,” in CCS, 2019.

[19] I. Cutress, “Investigating Performance of Multi-Threading on
Zen 3 and AMD Ryzen 5000,” 2020. [Online]. Available:
https://www.anandtech.com/show/16261/investigating-performance-
of-multithreading-on-zen-3-and-amd-ryzen-5000/2

[20] J. Edge, “Disallowing perf event open(),” 2016. [Online]. Available:
https://lwn.net/Articles/696216/

[21] D. Faggioli, “Re: [RFC PATCH v3 00/16] Core scheduling v3,”
2019. [Online]. Available: https://lore.kernel.org/lkml/277737d6034
b3da072d3b0b808d2fa6e110038b0.camel@suse.com/

[22] A. Fog, “The microarchitecture of Intel, AMD, and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,”
2021. [Online]. Available: https://www.agner.org/optimize/microarch
itecture.pdf

[23] A. Fogh, “Covert Shotgun: automatically finding SMT covert
channels,” 2016. [Online]. Available: https://cyber.wtf/2016/09/27/c
overt-shotgun/

[24] Github, “Systemd TODOs,” 2022. [Online]. Available: https:
//github.com/systemd/systemd/blob/aaec2216602ce3a26b7bca30eaf2
8e525ef5e762/TODO#L1272

[25] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security Symposium, 2018.

[26] M. S. Inci, B. Gulmezoglu, T. Eisenbarth, and B. Sunar, “Co-location
detection on the cloud,” in International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 2016, pp. 19–
34.

[27] Intel, “Developer Reference for Intel Integrated Performance
Primitives Cryptography,” 2019. [Online]. Available: https://software
.intel.com/en-us/ipp-crypto-reference

[28] Intel, “Intel 64 and IA-32 Architectures Optimization Reference
Manual,” 2019.

[29] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z,” 2019.

[30] D. Johnson, “And a little more... big changes to the LDQ/STQ sizes,
and new ’coalescing retire queue’ theory and sizes,” Mar 2021.
[Online]. Available: https://twitter.com/dougallj/status/137397347873
1255812

[31] M. Kettenis, “CVS: cvs.openbsd.org: src,” 2018. [Online]. Available:
https://www.mail-archive.com/source-changes@openbsd.org/msg99
141.html

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[33] M. Larabel, “Intel Hyper Threading Performance With A Core
i7 On Ubuntu 18.04 LTS,” June 2018. [Online]. Available:
https://www.phoronix.com/scan.php?page=article&item=intel-ht-
2018&num=4

[34] Linux Kernel Documentation, “Core Scheduling,” 2022. [Online].
Available: https://www.kernel.org/doc/html/latest/admin-guide/hw-
vuln/core-scheduling.html

[35] M. Lipp, D. Gruss, and M. Schwarz, “AMD Prefetch Attacks through
Power and Time,” in USENIX Security Symposium, 2022.

[36] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and D. Gruss,
“Take a Way: Exploring the Security Implications of AMD’s Cache
Way Predictors,” in AsiaCCS, 2020.

[37] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “PLATYPUS: Software-based Power Side-Channel
Attacks on x86,” in S&P, 2021.

[38] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space,” in
USENIX Security Symposium, 2018.

[39] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

[40] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-
Cores Cache Covert Channel,” in DIMVA, 2015.

[41] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. Al-
berto Boano, S. Mangard, and K. Römer, “Hello from the Other
Side: SSH over Robust Cache Covert Channels in the Cloud,” in
NDSS, 2017.

[42] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, Oct 1996. [Online]. Available:
https://cacr.uwaterloo.ca/hac/

[43] Microsoft, “Managing Hyper-V hypervisor scheduler types,” 2022.
[Online]. Available: https://docs.microsoft.com/en-us/windows-serv
er/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types

[44] A. Moghimi, T. Eisenbarth, and B. Sunar, “MemJam: A False De-
pendency Attack against Constant-Time Crypto Implementations in
SGX,” in CT-RSA, 2018.

[45] OpenSSL, “OpenSSL: The Open Source toolkit for SSL/TLS,” 2019.
[Online]. Available: http://www.openssl.org

[46] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Coun-
termeasures: the Case of AES,” in CT-RSA, 2006.

[47] J. K. Ousterhout et al., “Scheduling Techniques for Concurrent Sys-
tems,” in ICDCS, 1982.

[48] C. Percival, “Cache Missing for Fun and Profit,” in BSDCan, 2005.

[49] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security Symposium, 2016.

[50] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal Attack:
Leaking Control-Flow in SGX via the CPU Frontend,” in USENIX
Security Symposium, 2021.

[51] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage Against the
Machine Clear: A Systematic Analysis of Machine Clears and Their
Implications for Transient Execution Attacks,” in USENIX Security
Symposium, 2021.

[52] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds,” in CCS, 2009.

[53] T. Rokicki, C. Maurice, M. Botvinnik, and Y. Oren, “Port Contention
Goes Portable: Port Contention Side Channels in Web Browsers,” in
AsiaCCS, 2022.

[54] Y. Ruan, V. S. Pai, E. Nahum, and J. M. Tracey, “Evaluating the
Impact of Simultaneous Multithreading on Network Servers Using
Real Hardware,” in SIGMETRICS, 2005.

[55] M. Rybczyńska, “A full task-isolation mode for the kernel,” Apr
2020. [Online]. Available: https://lwn.net/Articles/816298/

[56] P. G. Sassone, J. Rupley, E. Brekelbaum, G. H. Loh, and B. Black,
“Matrix Scheduler Reloaded,” in ISCA, 2007.

[57] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in CCS, 2019.

[58] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic
Timers and Where to Find Them: High-Resolution Microarchitectural
Attacks in JavaScript,” in FC, 2017.

[59] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: abusing Intel SGX to conceal cache
attacks,” Cybersecurity, vol. 3, no. 1, p. 2, 2020.

[60] Standard Performance Evaluation Corporation, “SPECWeb99,” 2008.
[Online]. Available: https://www.spec.org/web99/

[61] D. Sullivan, O. Arias, T. Meade, and Y. Jin, “Microarchitectural
Minefields: 4K-aliasing Covert Channel and Multi-tenant Detection
in IaaS Clouds,” in NDSS, 2018.

[62] M. Taram, X. Ren, A. Venkat, and D. Tullsen, “SecSMT: Secur-
ing SMT processors against Contention-Based covert channels,” in
USENIX Security Symposium, Aug 2022.

[63] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data
Load,” in S&P, 2019.

[64] Z. Wang and R. B. Lee, “Covert and Side Channels due to Processor
Architecture,” in ACSAC, 2006.

[65] H. Wong, “Measuring Reorder Buffer Capacity,” 2013. [Online].
Available: http://blog.stuffedcow.net/2013/05/measuring-rob-capaci
ty/

[66] H. Wong, V. Betz, and J. Rose, “High-Performance Instruction
Scheduling Circuits for Superscalar Out-of-Order Soft Processors,”
ACM Transactions on Reconfigurable Technology and Systems,
vol. 11, no. 1, 2018.

[67] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-
speed Covert Channel Attacks in the Cloud,” in USENIX Security
Symposium, 2012.

[68] Xen Project, “Xen Project 4.16.0 Archives,” Dec 2021. [Online].
Available: https://xenproject.org/downloads/xen-project-archives/x
en-project-4-16-series/xen-project-4-16-0/

[69] Y. Xiao, Y. Zhang, and R. Teodorescu, “SPEECHMINER: A Frame-
work for Investigating and Measuring Speculative Execution Vulner-
abilities,” in NDSS, 2020.

[70] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlicht-
ing, “An exploration of L2 cache covert channels in virtualized
environments,” in CCSW, 2011.

[71] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in
a non-inclusive world,” in S&P, 2019.

[72] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sympo-
sium, 2014.

[73] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA,” JCEN, 2017.

Appendix A.
Investigating Potential Interference from
rdpru Instructions

To rule out any interference from the rdpru instructions
on the observed scheduler queue capacity, we repeated the
performance counter measurement from Section 3.1.1 with
the highlighted lines in Listing 1 enabled, shown by the red
curve in Figure 3. We see a shallower increase in stalled
cycles between 20 and 22 multiplications because another
instruction is sometimes occupying the ALU1 scheduler. As
the mov instruction (line 19) is fully handled by a register
rename [9], [10], [22], it is not enqueued into the scheduler
queue. Thus, we conclude that we see rdpru occupying the
ALU1 scheduler. The largest increase is between 21 and 22
and not between 20 and 21 multiplications, indicating that
rdpru does not strictly require ALU1 for execution but can
also use other ALUs.

To substantiate this finding, we increased the latency
of the delayed multiplications by increasing the number of
sqrtsd instructions in lines 13 to 16 from 3 to 6, extending
the contention window using the same approach as described
in Section 4.4. With this, the brown curve in Figure 3 again
shows the steep increase between 22 and 23 multiplications,
while, between 16 and 22 multiplications, the curve looks
identical to the red curve with only 3 sqrtsd instructions,
including the minor increase between 20 and 22 multipli-
cations. The signal from the multiplications now clearly
surmounts the increase caused by the rdpru instruction, on
which the additional sqrtsd instructions have no effect.
This is because rdpru executes immediately before the
multiplications, since, in contrast to them, it does not have
any long-latency dependencies. Consequently, even if the
first rdpru runs on ALU1, this does not affect the measured
capacity, as its scheduler queue entry is freed when rdpru
finishes, making it available for another multiplication.

Appendix B.
Contention on Different Scheduler Queues

Using the approach from Section 3.1.2, other scheduler
queues can be targeted as well: On Zen 3, we replaced the

40 45 50 55 60 65 70 75 80
0

1

2

3

Number of multiplications

∆
t

(t
im

er
tic

ks
)

M1

Figure 8: Average timing differences (n = 100000) on the
Apple M1 for different lengths of the multiplication block.

dependent multiplications with dependent divisions. Zen 3
exclusively executes divisions on ALU0 [10], so we target a
single scheduler queue different from the queue associated
with ALU1. With this, we observed a limit of 22 dependent
divisions, showing that the scheduler queues for ALU0 and
ALU1 have the same length. We also targeted the scheduler
queues of ALU0 and ALU1 on Zen 3 in parallel, using
an alternating sequence of mul, div, mul, div, etc.
We observed contention as soon as we added one more
mul or div to a chain of 44 instructions (22 mul, 22
div), exceeding the capacity of one of the two queues.
For comparison, Zen 3 executes add instructions on all of
its four ALUs. In an additional experiment with a chain of
dependent additions, we observed a total scheduler queue
capacity of 88 entries (22 per queue) for all the four ALUs.

To summarize, this shows that we are hitting a capacity
limit that is dependent on the capabilities of the ALUs
(unlike ROB contention). Using dependency chains and un-
privileged timing measurements, we can induce and observe
back-end stalls caused by contention on scheduler queues.
By measuring contention on a single scheduler queue, we
can observe execution of instructions that specifically re-
quire the associated ALU.

Appendix C.
Characterizing Timing Difference on Apple M1

To demonstrate that our reverse-engineering approach
can be generically applied to any architecture, given a non-
serializing instruction to read a sufficiently precise times-
tamp, we applied it to Apple’s M1 CPU that implements
the ARM AArch64 instruction set. We ported the code
from Listing 1 to ARM AArch64 using the CNTVCT_EL0
register as a time source. The reference manual explicitly
states that reads from this register are executed out of
order [16]. One challenge on the Apple M1 is the low
frequency of the CNTVCT_EL0 timer, which on our system
is only 24 MHz. To compensate for this, we increase the
number of fsqrt instructions to 20 to extend the time until
a back-end stall, caused by contention, is resolved. With this,
we see a steep increase in the average timing difference ∆t

over 100 000 experiments when we increase the number of
multiplications from 68 to 69 (see Appendix C). This is in
line with previous reverse-engineering [30] of the Apple M1

high-performance cores (called “Firestorm”). The Firestorm
cores have two multiplication-handling ALUs, each with a
separate 28-entry scheduler [30]. Additionally, in contrast
to Zen 2 and Zen 3, the Apple M1 has additional dispatch
buffers before the scheduler queues. In our concrete case,
a 12-entry dispatch buffer is placed in front of the multi-
plication ALU scheduler queues [30]. Hence, we observe
a back-end stall when we exceed the total capacity of that
dispatch buffer (12 entries) and of the two multiplication
ALU schedulers (each 28, i.e., 56 entries), i.e., when we
exceed 68 multiplications in our measurement code. This
shows that scheduler queue contention is also observable
on the M1, using the same approach.

Appendix D.
Comparison of the SQUIP Covert Chan-
nel with State-Of-The-Art Cross-VM Covert
Channels

The following table compares the bit rate of our
SQUIP covert channel in the cross-VM setting with other
state-of-the-art cross-VM covert channels (adapted from
Schwarz et al. [57]):

TABLE 2: Comparison of state-of-the-art cross-VM covert
channels, sorted by the true channel capacity (CC - works
cross-core) each work reported.

Covert channel Raw Capacity Error Rate True Capacity CC

Sullivan et al. [61] 1.49 Mbit/s 8.7 % 854.7 kbit/s yes
SQUIP (this work) 892.2 kbit/s 0.75 % 835.3 kbit/s no
Van Schaik et al. [63] 608 kbit/s 0 % 608 kbit/s no
Liu et al. [39] 600 kbit/s 1 % 551.5 kbit/s yes
Maurice et al. [40] 751.2 bit/s 5.7 % 514.3 kbit/s yes
Maurice et al. [41] 378.72 kbit/s 0 % 378.72 kbit/s yes
Pessl et al. [49] 411 kbit/s 4.11 % 309.4 kbit/s yes
Schwarz et al. [57] 26.8 kbit/s 0 % 4.3 kbit/s no
Wu et al. [67] 746.8 bit/s 0.09 % 739 bit/s yes
Xu et al. [70] 215 bit/s 5.12 % 152 bit/s no
Schwarz et al. [58] 11 bit/s 0 % 11 bit/s yes
Ristenpart et al. [52] 0.2 bit/s 0 % 0.2 bit/s no

Appendix E.
Attacked Code Sequence in mbedTLS

The following listing shows the attacked code sequence
in the modular exponentiation implementation of mbedTLS:

1 int mbedtls_mpi_exp_mod(/*...*/)
2 {
3 //...
4 while(1)
5 {
6 if(bufsize == 0)
7 {
8 if(nblimbs == 0)
9 break;

10 nblimbs--;
11 bufsize = 64;
12 }
13

14 bufsize--;
15 ei = (E->p[nblimbs] >> bufsize) & 1;

16

17 if(ei == 0 && state == 0)
18 continue; //skip leading 0s
19 if(ei == 0 && state == 1)
20 {
21 //only square!
22 mpi_montmul(X, X, N, mm, &T);
23 continue;
24 }
25

26 state = 2;
27 nbits++;
28 wbits |= ei;
29

30 //square...
31 mpi_montmul(X, X, N, mm, &T);
32

33 mpi_select(&WW, W, 2, wbits);
34 //...and multiply
35 mpi_montmul(X, &WW, N, mm, &T); //!!!
36

37 state--;
38 nbits = 0;
39 wbits = 0;
40 }
41 //...
42 }

In line 35, an additional call to mpi_montmul
(multiply) is performed for each ‘1’ in the exponent,
resulting in clearly distinguishable peaks in our contention
profiles.

Appendix F.
Key Extraction Parameters

TABLE 3: The parameters used for the optimization of the
key extraction. Parameters in the trace scope, apply to all
sections of the trace. The parameters in the section scope
are different for every section.

Scope Parameter

Trace

Window size N of the smoothing average
Window size Nm of a second larger average
Shift of the larger average
Factor multiplied with larger average before subtracting it
from the smoothed average [0-1]
Factor multiplied with the distance between two peaks,
before computing the number of 0s in between

Section

Length of the section
Correction factor for the length of a 1
Correction factor for the length of a 0
find_peaks height argument
find_peaks prominence argument
correction factor for the find_peaks distance argument

